Description: An open set of a metric space is a subspace of its base set. (Contributed by NM, 3-Sep-2006)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | mopnval.1 | |- J = ( MetOpen ` D ) |
|
| Assertion | mopnss | |- ( ( D e. ( *Met ` X ) /\ A e. J ) -> A C_ X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mopnval.1 | |- J = ( MetOpen ` D ) |
|
| 2 | 1 | mopntopon | |- ( D e. ( *Met ` X ) -> J e. ( TopOn ` X ) ) |
| 3 | toponss | |- ( ( J e. ( TopOn ` X ) /\ A e. J ) -> A C_ X ) |
|
| 4 | 2 3 | sylan | |- ( ( D e. ( *Met ` X ) /\ A e. J ) -> A C_ X ) |