Description: The set of open sets of a metric space is a topology. (Contributed by NM, 28-Aug-2006) (Revised by Mario Carneiro, 12-Nov-2013)
Ref | Expression | ||
---|---|---|---|
Hypothesis | mopnval.1 | |- J = ( MetOpen ` D ) |
|
Assertion | mopntop | |- ( D e. ( *Met ` X ) -> J e. Top ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mopnval.1 | |- J = ( MetOpen ` D ) |
|
2 | 1 | mopntopon | |- ( D e. ( *Met ` X ) -> J e. ( TopOn ` X ) ) |
3 | topontop | |- ( J e. ( TopOn ` X ) -> J e. Top ) |
|
4 | 2 3 | syl | |- ( D e. ( *Met ` X ) -> J e. Top ) |