| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mopnval.1 |
|- J = ( MetOpen ` D ) |
| 2 |
1
|
mopnval |
|- ( D e. ( *Met ` X ) -> J = ( topGen ` ran ( ball ` D ) ) ) |
| 3 |
|
blbas |
|- ( D e. ( *Met ` X ) -> ran ( ball ` D ) e. TopBases ) |
| 4 |
|
tgtopon |
|- ( ran ( ball ` D ) e. TopBases -> ( topGen ` ran ( ball ` D ) ) e. ( TopOn ` U. ran ( ball ` D ) ) ) |
| 5 |
3 4
|
syl |
|- ( D e. ( *Met ` X ) -> ( topGen ` ran ( ball ` D ) ) e. ( TopOn ` U. ran ( ball ` D ) ) ) |
| 6 |
|
unirnbl |
|- ( D e. ( *Met ` X ) -> U. ran ( ball ` D ) = X ) |
| 7 |
6
|
fveq2d |
|- ( D e. ( *Met ` X ) -> ( TopOn ` U. ran ( ball ` D ) ) = ( TopOn ` X ) ) |
| 8 |
5 7
|
eleqtrd |
|- ( D e. ( *Met ` X ) -> ( topGen ` ran ( ball ` D ) ) e. ( TopOn ` X ) ) |
| 9 |
2 8
|
eqeltrd |
|- ( D e. ( *Met ` X ) -> J e. ( TopOn ` X ) ) |