Step |
Hyp |
Ref |
Expression |
1 |
|
mopnval.1 |
|- J = ( MetOpen ` D ) |
2 |
1
|
mopnval |
|- ( D e. ( *Met ` X ) -> J = ( topGen ` ran ( ball ` D ) ) ) |
3 |
|
blbas |
|- ( D e. ( *Met ` X ) -> ran ( ball ` D ) e. TopBases ) |
4 |
|
tgtopon |
|- ( ran ( ball ` D ) e. TopBases -> ( topGen ` ran ( ball ` D ) ) e. ( TopOn ` U. ran ( ball ` D ) ) ) |
5 |
3 4
|
syl |
|- ( D e. ( *Met ` X ) -> ( topGen ` ran ( ball ` D ) ) e. ( TopOn ` U. ran ( ball ` D ) ) ) |
6 |
|
unirnbl |
|- ( D e. ( *Met ` X ) -> U. ran ( ball ` D ) = X ) |
7 |
6
|
fveq2d |
|- ( D e. ( *Met ` X ) -> ( TopOn ` U. ran ( ball ` D ) ) = ( TopOn ` X ) ) |
8 |
5 7
|
eleqtrd |
|- ( D e. ( *Met ` X ) -> ( topGen ` ran ( ball ` D ) ) e. ( TopOn ` X ) ) |
9 |
2 8
|
eqeltrd |
|- ( D e. ( *Met ` X ) -> J e. ( TopOn ` X ) ) |