Metamath Proof Explorer


Theorem mopnuni

Description: The union of all open sets in a metric space is its underlying set. (Contributed by NM, 4-Sep-2006) (Revised by Mario Carneiro, 12-Nov-2013)

Ref Expression
Hypothesis mopnval.1
|- J = ( MetOpen ` D )
Assertion mopnuni
|- ( D e. ( *Met ` X ) -> X = U. J )

Proof

Step Hyp Ref Expression
1 mopnval.1
 |-  J = ( MetOpen ` D )
2 1 mopntopon
 |-  ( D e. ( *Met ` X ) -> J e. ( TopOn ` X ) )
3 toponuni
 |-  ( J e. ( TopOn ` X ) -> X = U. J )
4 2 3 syl
 |-  ( D e. ( *Met ` X ) -> X = U. J )