Step |
Hyp |
Ref |
Expression |
1 |
|
morex.1 |
|- B e. _V |
2 |
|
morex.2 |
|- ( x = B -> ( ph <-> ps ) ) |
3 |
|
df-rex |
|- ( E. x e. A ph <-> E. x ( x e. A /\ ph ) ) |
4 |
|
exancom |
|- ( E. x ( x e. A /\ ph ) <-> E. x ( ph /\ x e. A ) ) |
5 |
3 4
|
bitri |
|- ( E. x e. A ph <-> E. x ( ph /\ x e. A ) ) |
6 |
|
nfmo1 |
|- F/ x E* x ph |
7 |
|
nfe1 |
|- F/ x E. x ( ph /\ x e. A ) |
8 |
6 7
|
nfan |
|- F/ x ( E* x ph /\ E. x ( ph /\ x e. A ) ) |
9 |
|
mopick |
|- ( ( E* x ph /\ E. x ( ph /\ x e. A ) ) -> ( ph -> x e. A ) ) |
10 |
8 9
|
alrimi |
|- ( ( E* x ph /\ E. x ( ph /\ x e. A ) ) -> A. x ( ph -> x e. A ) ) |
11 |
|
eleq1 |
|- ( x = B -> ( x e. A <-> B e. A ) ) |
12 |
2 11
|
imbi12d |
|- ( x = B -> ( ( ph -> x e. A ) <-> ( ps -> B e. A ) ) ) |
13 |
1 12
|
spcv |
|- ( A. x ( ph -> x e. A ) -> ( ps -> B e. A ) ) |
14 |
10 13
|
syl |
|- ( ( E* x ph /\ E. x ( ph /\ x e. A ) ) -> ( ps -> B e. A ) ) |
15 |
5 14
|
sylan2b |
|- ( ( E* x ph /\ E. x e. A ph ) -> ( ps -> B e. A ) ) |
16 |
15
|
ancoms |
|- ( ( E. x e. A ph /\ E* x ph ) -> ( ps -> B e. A ) ) |