Metamath Proof Explorer


Theorem mosn

Description: "At most one" element in a singleton. (Contributed by Zhi Wang, 19-Sep-2024)

Ref Expression
Assertion mosn
|- ( A = { B } -> E* x x e. A )

Proof

Step Hyp Ref Expression
1 rmosn
 |-  E* x e. { B } T.
2 rmotru
 |-  ( E* x x e. { B } <-> E* x e. { B } T. )
3 1 2 mpbir
 |-  E* x x e. { B }
4 eleq2
 |-  ( A = { B } -> ( x e. A <-> x e. { B } ) )
5 4 mobidv
 |-  ( A = { B } -> ( E* x x e. A <-> E* x x e. { B } ) )
6 3 5 mpbiri
 |-  ( A = { B } -> E* x x e. A )