Description: There exists at most one set whose singleton is equal to a given class. See also moeq . (Contributed by BJ, 24-Sep-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mosneq | |- E* x { x } = A |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtr3 | |- ( ( { x } = A /\ { y } = A ) -> { x } = { y } ) |
|
| 2 | vex | |- x e. _V |
|
| 3 | 2 | sneqr | |- ( { x } = { y } -> x = y ) |
| 4 | 1 3 | syl | |- ( ( { x } = A /\ { y } = A ) -> x = y ) |
| 5 | 4 | gen2 | |- A. x A. y ( ( { x } = A /\ { y } = A ) -> x = y ) |
| 6 | sneq | |- ( x = y -> { x } = { y } ) |
|
| 7 | 6 | eqeq1d | |- ( x = y -> ( { x } = A <-> { y } = A ) ) |
| 8 | 7 | mo4 | |- ( E* x { x } = A <-> A. x A. y ( ( { x } = A /\ { y } = A ) -> x = y ) ) |
| 9 | 5 8 | mpbir | |- E* x { x } = A |