Metamath Proof Explorer


Theorem mosneq

Description: There exists at most one set whose singleton is equal to a given class. See also moeq . (Contributed by BJ, 24-Sep-2022)

Ref Expression
Assertion mosneq
|- E* x { x } = A

Proof

Step Hyp Ref Expression
1 eqtr3
 |-  ( ( { x } = A /\ { y } = A ) -> { x } = { y } )
2 vex
 |-  x e. _V
3 2 sneqr
 |-  ( { x } = { y } -> x = y )
4 1 3 syl
 |-  ( ( { x } = A /\ { y } = A ) -> x = y )
5 4 gen2
 |-  A. x A. y ( ( { x } = A /\ { y } = A ) -> x = y )
6 sneq
 |-  ( x = y -> { x } = { y } )
7 6 eqeq1d
 |-  ( x = y -> ( { x } = A <-> { y } = A ) )
8 7 mo4
 |-  ( E* x { x } = A <-> A. x A. y ( ( { x } = A /\ { y } = A ) -> x = y ) )
9 5 8 mpbir
 |-  E* x { x } = A