Metamath Proof Explorer


Theorem motcgr3

Description: Property of a motion: distances are preserved, special case of triangles. (Contributed by Thierry Arnoux, 15-Dec-2019)

Ref Expression
Hypotheses motcgr3.p
|- P = ( Base ` G )
motcgr3.m
|- .- = ( dist ` G )
motcgr3.r
|- .~ = ( cgrG ` G )
motcgr3.g
|- ( ph -> G e. TarskiG )
motcgr3.a
|- ( ph -> A e. P )
motcgr3.b
|- ( ph -> B e. P )
motcgr3.c
|- ( ph -> C e. P )
motcgr3.d
|- ( ph -> D = ( H ` A ) )
motcgr3.e
|- ( ph -> E = ( H ` B ) )
motcgr3.f
|- ( ph -> F = ( H ` C ) )
motcgr3.h
|- ( ph -> H e. ( G Ismt G ) )
Assertion motcgr3
|- ( ph -> <" A B C "> .~ <" D E F "> )

Proof

Step Hyp Ref Expression
1 motcgr3.p
 |-  P = ( Base ` G )
2 motcgr3.m
 |-  .- = ( dist ` G )
3 motcgr3.r
 |-  .~ = ( cgrG ` G )
4 motcgr3.g
 |-  ( ph -> G e. TarskiG )
5 motcgr3.a
 |-  ( ph -> A e. P )
6 motcgr3.b
 |-  ( ph -> B e. P )
7 motcgr3.c
 |-  ( ph -> C e. P )
8 motcgr3.d
 |-  ( ph -> D = ( H ` A ) )
9 motcgr3.e
 |-  ( ph -> E = ( H ` B ) )
10 motcgr3.f
 |-  ( ph -> F = ( H ` C ) )
11 motcgr3.h
 |-  ( ph -> H e. ( G Ismt G ) )
12 1 2 4 11 5 motcl
 |-  ( ph -> ( H ` A ) e. P )
13 8 12 eqeltrd
 |-  ( ph -> D e. P )
14 1 2 4 11 6 motcl
 |-  ( ph -> ( H ` B ) e. P )
15 9 14 eqeltrd
 |-  ( ph -> E e. P )
16 1 2 4 11 7 motcl
 |-  ( ph -> ( H ` C ) e. P )
17 10 16 eqeltrd
 |-  ( ph -> F e. P )
18 8 9 oveq12d
 |-  ( ph -> ( D .- E ) = ( ( H ` A ) .- ( H ` B ) ) )
19 1 2 4 5 6 11 motcgr
 |-  ( ph -> ( ( H ` A ) .- ( H ` B ) ) = ( A .- B ) )
20 18 19 eqtr2d
 |-  ( ph -> ( A .- B ) = ( D .- E ) )
21 9 10 oveq12d
 |-  ( ph -> ( E .- F ) = ( ( H ` B ) .- ( H ` C ) ) )
22 1 2 4 6 7 11 motcgr
 |-  ( ph -> ( ( H ` B ) .- ( H ` C ) ) = ( B .- C ) )
23 21 22 eqtr2d
 |-  ( ph -> ( B .- C ) = ( E .- F ) )
24 10 8 oveq12d
 |-  ( ph -> ( F .- D ) = ( ( H ` C ) .- ( H ` A ) ) )
25 1 2 4 7 5 11 motcgr
 |-  ( ph -> ( ( H ` C ) .- ( H ` A ) ) = ( C .- A ) )
26 24 25 eqtr2d
 |-  ( ph -> ( C .- A ) = ( F .- D ) )
27 1 2 3 4 5 6 7 13 15 17 20 23 26 trgcgr
 |-  ( ph -> <" A B C "> .~ <" D E F "> )