| Step |
Hyp |
Ref |
Expression |
| 1 |
|
israg.p |
|- P = ( Base ` G ) |
| 2 |
|
israg.d |
|- .- = ( dist ` G ) |
| 3 |
|
israg.i |
|- I = ( Itv ` G ) |
| 4 |
|
israg.l |
|- L = ( LineG ` G ) |
| 5 |
|
israg.s |
|- S = ( pInvG ` G ) |
| 6 |
|
israg.g |
|- ( ph -> G e. TarskiG ) |
| 7 |
|
israg.a |
|- ( ph -> A e. P ) |
| 8 |
|
israg.b |
|- ( ph -> B e. P ) |
| 9 |
|
israg.c |
|- ( ph -> C e. P ) |
| 10 |
|
motrag.f |
|- ( ph -> F e. ( G Ismt G ) ) |
| 11 |
|
motrag.1 |
|- ( ph -> <" A B C "> e. ( raG ` G ) ) |
| 12 |
|
eqid |
|- ( cgrG ` G ) = ( cgrG ` G ) |
| 13 |
1 2 6 10 7
|
motcl |
|- ( ph -> ( F ` A ) e. P ) |
| 14 |
1 2 6 10 8
|
motcl |
|- ( ph -> ( F ` B ) e. P ) |
| 15 |
1 2 6 10 9
|
motcl |
|- ( ph -> ( F ` C ) e. P ) |
| 16 |
|
eqidd |
|- ( ph -> ( F ` A ) = ( F ` A ) ) |
| 17 |
|
eqidd |
|- ( ph -> ( F ` B ) = ( F ` B ) ) |
| 18 |
|
eqidd |
|- ( ph -> ( F ` C ) = ( F ` C ) ) |
| 19 |
1 2 12 6 7 8 9 16 17 18 10
|
motcgr3 |
|- ( ph -> <" A B C "> ( cgrG ` G ) <" ( F ` A ) ( F ` B ) ( F ` C ) "> ) |
| 20 |
1 2 3 4 5 6 7 8 9 12 13 14 15 11 19
|
ragcgr |
|- ( ph -> <" ( F ` A ) ( F ` B ) ( F ` C ) "> e. ( raG ` G ) ) |