Metamath Proof Explorer


Theorem motrag

Description: Right angles are preserved by motions. (Contributed by Thierry Arnoux, 16-Dec-2019)

Ref Expression
Hypotheses israg.p
|- P = ( Base ` G )
israg.d
|- .- = ( dist ` G )
israg.i
|- I = ( Itv ` G )
israg.l
|- L = ( LineG ` G )
israg.s
|- S = ( pInvG ` G )
israg.g
|- ( ph -> G e. TarskiG )
israg.a
|- ( ph -> A e. P )
israg.b
|- ( ph -> B e. P )
israg.c
|- ( ph -> C e. P )
motrag.f
|- ( ph -> F e. ( G Ismt G ) )
motrag.1
|- ( ph -> <" A B C "> e. ( raG ` G ) )
Assertion motrag
|- ( ph -> <" ( F ` A ) ( F ` B ) ( F ` C ) "> e. ( raG ` G ) )

Proof

Step Hyp Ref Expression
1 israg.p
 |-  P = ( Base ` G )
2 israg.d
 |-  .- = ( dist ` G )
3 israg.i
 |-  I = ( Itv ` G )
4 israg.l
 |-  L = ( LineG ` G )
5 israg.s
 |-  S = ( pInvG ` G )
6 israg.g
 |-  ( ph -> G e. TarskiG )
7 israg.a
 |-  ( ph -> A e. P )
8 israg.b
 |-  ( ph -> B e. P )
9 israg.c
 |-  ( ph -> C e. P )
10 motrag.f
 |-  ( ph -> F e. ( G Ismt G ) )
11 motrag.1
 |-  ( ph -> <" A B C "> e. ( raG ` G ) )
12 eqid
 |-  ( cgrG ` G ) = ( cgrG ` G )
13 1 2 6 10 7 motcl
 |-  ( ph -> ( F ` A ) e. P )
14 1 2 6 10 8 motcl
 |-  ( ph -> ( F ` B ) e. P )
15 1 2 6 10 9 motcl
 |-  ( ph -> ( F ` C ) e. P )
16 eqidd
 |-  ( ph -> ( F ` A ) = ( F ` A ) )
17 eqidd
 |-  ( ph -> ( F ` B ) = ( F ` B ) )
18 eqidd
 |-  ( ph -> ( F ` C ) = ( F ` C ) )
19 1 2 12 6 7 8 9 16 17 18 10 motcgr3
 |-  ( ph -> <" A B C "> ( cgrG ` G ) <" ( F ` A ) ( F ` B ) ( F ` C ) "> )
20 1 2 3 4 5 6 7 8 9 12 13 14 15 11 19 ragcgr
 |-  ( ph -> <" ( F ` A ) ( F ` B ) ( F ` C ) "> e. ( raG ` G ) )