Metamath Proof Explorer


Theorem mp2an

Description: An inference based on modus ponens. (Contributed by NM, 13-Apr-1995)

Ref Expression
Hypotheses mp2an.1
|- ph
mp2an.2
|- ps
mp2an.3
|- ( ( ph /\ ps ) -> ch )
Assertion mp2an
|- ch

Proof

Step Hyp Ref Expression
1 mp2an.1
 |-  ph
2 mp2an.2
 |-  ps
3 mp2an.3
 |-  ( ( ph /\ ps ) -> ch )
4 1 3 mpan
 |-  ( ps -> ch )
5 2 4 ax-mp
 |-  ch