Metamath Proof Explorer


Theorem mp2and

Description: A deduction based on modus ponens. (Contributed by NM, 12-Dec-2004)

Ref Expression
Hypotheses mp2and.1
|- ( ph -> ps )
mp2and.2
|- ( ph -> ch )
mp2and.3
|- ( ph -> ( ( ps /\ ch ) -> th ) )
Assertion mp2and
|- ( ph -> th )

Proof

Step Hyp Ref Expression
1 mp2and.1
 |-  ( ph -> ps )
2 mp2and.2
 |-  ( ph -> ch )
3 mp2and.3
 |-  ( ph -> ( ( ps /\ ch ) -> th ) )
4 1 3 mpand
 |-  ( ph -> ( ch -> th ) )
5 2 4 mpd
 |-  ( ph -> th )