Metamath Proof Explorer


Theorem mp2ani

Description: An inference based on modus ponens. (Contributed by NM, 12-Dec-2004)

Ref Expression
Hypotheses mp2ani.1
|- ps
mp2ani.2
|- ch
mp2ani.3
|- ( ph -> ( ( ps /\ ch ) -> th ) )
Assertion mp2ani
|- ( ph -> th )

Proof

Step Hyp Ref Expression
1 mp2ani.1
 |-  ps
2 mp2ani.2
 |-  ch
3 mp2ani.3
 |-  ( ph -> ( ( ps /\ ch ) -> th ) )
4 1 3 mpani
 |-  ( ph -> ( ch -> th ) )
5 2 4 mpi
 |-  ( ph -> th )