Metamath Proof Explorer


Theorem mp2b

Description: A double modus ponens inference. (Contributed by Mario Carneiro, 24-Jan-2013)

Ref Expression
Hypotheses mp2b.1
|- ph
mp2b.2
|- ( ph -> ps )
mp2b.3
|- ( ps -> ch )
Assertion mp2b
|- ch

Proof

Step Hyp Ref Expression
1 mp2b.1
 |-  ph
2 mp2b.2
 |-  ( ph -> ps )
3 mp2b.3
 |-  ( ps -> ch )
4 1 2 ax-mp
 |-  ps
5 4 3 ax-mp
 |-  ch