| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							mp2pm2mp.a | 
							 |-  A = ( N Mat R )  | 
						
						
							| 2 | 
							
								
							 | 
							mp2pm2mp.q | 
							 |-  Q = ( Poly1 ` A )  | 
						
						
							| 3 | 
							
								
							 | 
							mp2pm2mp.l | 
							 |-  L = ( Base ` Q )  | 
						
						
							| 4 | 
							
								
							 | 
							mp2pm2mp.m | 
							 |-  .x. = ( .s ` P )  | 
						
						
							| 5 | 
							
								
							 | 
							mp2pm2mp.e | 
							 |-  E = ( .g ` ( mulGrp ` P ) )  | 
						
						
							| 6 | 
							
								
							 | 
							mp2pm2mp.y | 
							 |-  Y = ( var1 ` R )  | 
						
						
							| 7 | 
							
								
							 | 
							mp2pm2mp.i | 
							 |-  I = ( p e. L |-> ( i e. N , j e. N |-> ( P gsum ( k e. NN0 |-> ( ( i ( ( coe1 ` p ) ` k ) j ) .x. ( k E Y ) ) ) ) ) )  | 
						
						
							| 8 | 
							
								
							 | 
							mp2pm2mplem2.p | 
							 |-  P = ( Poly1 ` R )  | 
						
						
							| 9 | 
							
								
							 | 
							mp2pm2mplem5.m | 
							 |-  .* = ( .s ` Q )  | 
						
						
							| 10 | 
							
								
							 | 
							mp2pm2mplem5.e | 
							 |-  .^ = ( .g ` ( mulGrp ` Q ) )  | 
						
						
							| 11 | 
							
								
							 | 
							mp2pm2mplem5.x | 
							 |-  X = ( var1 ` A )  | 
						
						
							| 12 | 
							
								
							 | 
							nn0ex | 
							 |-  NN0 e. _V  | 
						
						
							| 13 | 
							
								12
							 | 
							a1i | 
							 |-  ( ( N e. Fin /\ R e. Ring /\ O e. L ) -> NN0 e. _V )  | 
						
						
							| 14 | 
							
								1
							 | 
							matring | 
							 |-  ( ( N e. Fin /\ R e. Ring ) -> A e. Ring )  | 
						
						
							| 15 | 
							
								2
							 | 
							ply1lmod | 
							 |-  ( A e. Ring -> Q e. LMod )  | 
						
						
							| 16 | 
							
								14 15
							 | 
							syl | 
							 |-  ( ( N e. Fin /\ R e. Ring ) -> Q e. LMod )  | 
						
						
							| 17 | 
							
								16
							 | 
							3adant3 | 
							 |-  ( ( N e. Fin /\ R e. Ring /\ O e. L ) -> Q e. LMod )  | 
						
						
							| 18 | 
							
								14
							 | 
							3adant3 | 
							 |-  ( ( N e. Fin /\ R e. Ring /\ O e. L ) -> A e. Ring )  | 
						
						
							| 19 | 
							
								2
							 | 
							ply1sca | 
							 |-  ( A e. Ring -> A = ( Scalar ` Q ) )  | 
						
						
							| 20 | 
							
								18 19
							 | 
							syl | 
							 |-  ( ( N e. Fin /\ R e. Ring /\ O e. L ) -> A = ( Scalar ` Q ) )  | 
						
						
							| 21 | 
							
								
							 | 
							simpl2 | 
							 |-  ( ( ( N e. Fin /\ R e. Ring /\ O e. L ) /\ k e. NN0 ) -> R e. Ring )  | 
						
						
							| 22 | 
							
								
							 | 
							eqid | 
							 |-  ( N Mat P ) = ( N Mat P )  | 
						
						
							| 23 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` ( N Mat P ) ) = ( Base ` ( N Mat P ) )  | 
						
						
							| 24 | 
							
								1 2 3 8 4 5 6 7 22 23
							 | 
							mply1topmatcl | 
							 |-  ( ( N e. Fin /\ R e. Ring /\ O e. L ) -> ( I ` O ) e. ( Base ` ( N Mat P ) ) )  | 
						
						
							| 25 | 
							
								24
							 | 
							adantr | 
							 |-  ( ( ( N e. Fin /\ R e. Ring /\ O e. L ) /\ k e. NN0 ) -> ( I ` O ) e. ( Base ` ( N Mat P ) ) )  | 
						
						
							| 26 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ( N e. Fin /\ R e. Ring /\ O e. L ) /\ k e. NN0 ) -> k e. NN0 )  | 
						
						
							| 27 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` A ) = ( Base ` A )  | 
						
						
							| 28 | 
							
								8 22 23 1 27
							 | 
							decpmatcl | 
							 |-  ( ( R e. Ring /\ ( I ` O ) e. ( Base ` ( N Mat P ) ) /\ k e. NN0 ) -> ( ( I ` O ) decompPMat k ) e. ( Base ` A ) )  | 
						
						
							| 29 | 
							
								21 25 26 28
							 | 
							syl3anc | 
							 |-  ( ( ( N e. Fin /\ R e. Ring /\ O e. L ) /\ k e. NN0 ) -> ( ( I ` O ) decompPMat k ) e. ( Base ` A ) )  | 
						
						
							| 30 | 
							
								
							 | 
							eqid | 
							 |-  ( mulGrp ` Q ) = ( mulGrp ` Q )  | 
						
						
							| 31 | 
							
								2 11 30 10 3
							 | 
							ply1moncl | 
							 |-  ( ( A e. Ring /\ k e. NN0 ) -> ( k .^ X ) e. L )  | 
						
						
							| 32 | 
							
								18 31
							 | 
							sylan | 
							 |-  ( ( ( N e. Fin /\ R e. Ring /\ O e. L ) /\ k e. NN0 ) -> ( k .^ X ) e. L )  | 
						
						
							| 33 | 
							
								
							 | 
							eqid | 
							 |-  ( 0g ` Q ) = ( 0g ` Q )  | 
						
						
							| 34 | 
							
								
							 | 
							eqid | 
							 |-  ( 0g ` A ) = ( 0g ` A )  | 
						
						
							| 35 | 
							
								
							 | 
							fveq2 | 
							 |-  ( k = l -> ( ( coe1 ` p ) ` k ) = ( ( coe1 ` p ) ` l ) )  | 
						
						
							| 36 | 
							
								35
							 | 
							oveqd | 
							 |-  ( k = l -> ( i ( ( coe1 ` p ) ` k ) j ) = ( i ( ( coe1 ` p ) ` l ) j ) )  | 
						
						
							| 37 | 
							
								
							 | 
							oveq1 | 
							 |-  ( k = l -> ( k E Y ) = ( l E Y ) )  | 
						
						
							| 38 | 
							
								36 37
							 | 
							oveq12d | 
							 |-  ( k = l -> ( ( i ( ( coe1 ` p ) ` k ) j ) .x. ( k E Y ) ) = ( ( i ( ( coe1 ` p ) ` l ) j ) .x. ( l E Y ) ) )  | 
						
						
							| 39 | 
							
								38
							 | 
							cbvmptv | 
							 |-  ( k e. NN0 |-> ( ( i ( ( coe1 ` p ) ` k ) j ) .x. ( k E Y ) ) ) = ( l e. NN0 |-> ( ( i ( ( coe1 ` p ) ` l ) j ) .x. ( l E Y ) ) )  | 
						
						
							| 40 | 
							
								39
							 | 
							oveq2i | 
							 |-  ( P gsum ( k e. NN0 |-> ( ( i ( ( coe1 ` p ) ` k ) j ) .x. ( k E Y ) ) ) ) = ( P gsum ( l e. NN0 |-> ( ( i ( ( coe1 ` p ) ` l ) j ) .x. ( l E Y ) ) ) )  | 
						
						
							| 41 | 
							
								40
							 | 
							a1i | 
							 |-  ( ( i e. N /\ j e. N ) -> ( P gsum ( k e. NN0 |-> ( ( i ( ( coe1 ` p ) ` k ) j ) .x. ( k E Y ) ) ) ) = ( P gsum ( l e. NN0 |-> ( ( i ( ( coe1 ` p ) ` l ) j ) .x. ( l E Y ) ) ) ) )  | 
						
						
							| 42 | 
							
								41
							 | 
							mpoeq3ia | 
							 |-  ( i e. N , j e. N |-> ( P gsum ( k e. NN0 |-> ( ( i ( ( coe1 ` p ) ` k ) j ) .x. ( k E Y ) ) ) ) ) = ( i e. N , j e. N |-> ( P gsum ( l e. NN0 |-> ( ( i ( ( coe1 ` p ) ` l ) j ) .x. ( l E Y ) ) ) ) )  | 
						
						
							| 43 | 
							
								42
							 | 
							mpteq2i | 
							 |-  ( p e. L |-> ( i e. N , j e. N |-> ( P gsum ( k e. NN0 |-> ( ( i ( ( coe1 ` p ) ` k ) j ) .x. ( k E Y ) ) ) ) ) ) = ( p e. L |-> ( i e. N , j e. N |-> ( P gsum ( l e. NN0 |-> ( ( i ( ( coe1 ` p ) ` l ) j ) .x. ( l E Y ) ) ) ) ) )  | 
						
						
							| 44 | 
							
								7 43
							 | 
							eqtri | 
							 |-  I = ( p e. L |-> ( i e. N , j e. N |-> ( P gsum ( l e. NN0 |-> ( ( i ( ( coe1 ` p ) ` l ) j ) .x. ( l E Y ) ) ) ) ) )  | 
						
						
							| 45 | 
							
								1 2 3 4 5 6 44 8
							 | 
							mp2pm2mplem4 | 
							 |-  ( ( ( N e. Fin /\ R e. Ring /\ O e. L ) /\ k e. NN0 ) -> ( ( I ` O ) decompPMat k ) = ( ( coe1 ` O ) ` k ) )  | 
						
						
							| 46 | 
							
								45
							 | 
							mpteq2dva | 
							 |-  ( ( N e. Fin /\ R e. Ring /\ O e. L ) -> ( k e. NN0 |-> ( ( I ` O ) decompPMat k ) ) = ( k e. NN0 |-> ( ( coe1 ` O ) ` k ) ) )  | 
						
						
							| 47 | 
							
								2 3 34
							 | 
							mptcoe1fsupp | 
							 |-  ( ( A e. Ring /\ O e. L ) -> ( k e. NN0 |-> ( ( coe1 ` O ) ` k ) ) finSupp ( 0g ` A ) )  | 
						
						
							| 48 | 
							
								14 47
							 | 
							stoic3 | 
							 |-  ( ( N e. Fin /\ R e. Ring /\ O e. L ) -> ( k e. NN0 |-> ( ( coe1 ` O ) ` k ) ) finSupp ( 0g ` A ) )  | 
						
						
							| 49 | 
							
								46 48
							 | 
							eqbrtrd | 
							 |-  ( ( N e. Fin /\ R e. Ring /\ O e. L ) -> ( k e. NN0 |-> ( ( I ` O ) decompPMat k ) ) finSupp ( 0g ` A ) )  | 
						
						
							| 50 | 
							
								13 17 20 3 29 32 33 34 9 49
							 | 
							mptscmfsupp0 | 
							 |-  ( ( N e. Fin /\ R e. Ring /\ O e. L ) -> ( k e. NN0 |-> ( ( ( I ` O ) decompPMat k ) .* ( k .^ X ) ) ) finSupp ( 0g ` Q ) )  |