Step |
Hyp |
Ref |
Expression |
1 |
|
mp2pm2mp.a |
|- A = ( N Mat R ) |
2 |
|
mp2pm2mp.q |
|- Q = ( Poly1 ` A ) |
3 |
|
mp2pm2mp.l |
|- L = ( Base ` Q ) |
4 |
|
mp2pm2mp.m |
|- .x. = ( .s ` P ) |
5 |
|
mp2pm2mp.e |
|- E = ( .g ` ( mulGrp ` P ) ) |
6 |
|
mp2pm2mp.y |
|- Y = ( var1 ` R ) |
7 |
|
mp2pm2mp.i |
|- I = ( p e. L |-> ( i e. N , j e. N |-> ( P gsum ( k e. NN0 |-> ( ( i ( ( coe1 ` p ) ` k ) j ) .x. ( k E Y ) ) ) ) ) ) |
8 |
|
mp2pm2mplem2.p |
|- P = ( Poly1 ` R ) |
9 |
|
mp2pm2mplem5.m |
|- .* = ( .s ` Q ) |
10 |
|
mp2pm2mplem5.e |
|- .^ = ( .g ` ( mulGrp ` Q ) ) |
11 |
|
mp2pm2mplem5.x |
|- X = ( var1 ` A ) |
12 |
|
nn0ex |
|- NN0 e. _V |
13 |
12
|
a1i |
|- ( ( N e. Fin /\ R e. Ring /\ O e. L ) -> NN0 e. _V ) |
14 |
1
|
matring |
|- ( ( N e. Fin /\ R e. Ring ) -> A e. Ring ) |
15 |
2
|
ply1lmod |
|- ( A e. Ring -> Q e. LMod ) |
16 |
14 15
|
syl |
|- ( ( N e. Fin /\ R e. Ring ) -> Q e. LMod ) |
17 |
16
|
3adant3 |
|- ( ( N e. Fin /\ R e. Ring /\ O e. L ) -> Q e. LMod ) |
18 |
14
|
3adant3 |
|- ( ( N e. Fin /\ R e. Ring /\ O e. L ) -> A e. Ring ) |
19 |
2
|
ply1sca |
|- ( A e. Ring -> A = ( Scalar ` Q ) ) |
20 |
18 19
|
syl |
|- ( ( N e. Fin /\ R e. Ring /\ O e. L ) -> A = ( Scalar ` Q ) ) |
21 |
|
simpl2 |
|- ( ( ( N e. Fin /\ R e. Ring /\ O e. L ) /\ k e. NN0 ) -> R e. Ring ) |
22 |
|
eqid |
|- ( N Mat P ) = ( N Mat P ) |
23 |
|
eqid |
|- ( Base ` ( N Mat P ) ) = ( Base ` ( N Mat P ) ) |
24 |
1 2 3 8 4 5 6 7 22 23
|
mply1topmatcl |
|- ( ( N e. Fin /\ R e. Ring /\ O e. L ) -> ( I ` O ) e. ( Base ` ( N Mat P ) ) ) |
25 |
24
|
adantr |
|- ( ( ( N e. Fin /\ R e. Ring /\ O e. L ) /\ k e. NN0 ) -> ( I ` O ) e. ( Base ` ( N Mat P ) ) ) |
26 |
|
simpr |
|- ( ( ( N e. Fin /\ R e. Ring /\ O e. L ) /\ k e. NN0 ) -> k e. NN0 ) |
27 |
|
eqid |
|- ( Base ` A ) = ( Base ` A ) |
28 |
8 22 23 1 27
|
decpmatcl |
|- ( ( R e. Ring /\ ( I ` O ) e. ( Base ` ( N Mat P ) ) /\ k e. NN0 ) -> ( ( I ` O ) decompPMat k ) e. ( Base ` A ) ) |
29 |
21 25 26 28
|
syl3anc |
|- ( ( ( N e. Fin /\ R e. Ring /\ O e. L ) /\ k e. NN0 ) -> ( ( I ` O ) decompPMat k ) e. ( Base ` A ) ) |
30 |
|
eqid |
|- ( mulGrp ` Q ) = ( mulGrp ` Q ) |
31 |
2 11 30 10 3
|
ply1moncl |
|- ( ( A e. Ring /\ k e. NN0 ) -> ( k .^ X ) e. L ) |
32 |
18 31
|
sylan |
|- ( ( ( N e. Fin /\ R e. Ring /\ O e. L ) /\ k e. NN0 ) -> ( k .^ X ) e. L ) |
33 |
|
eqid |
|- ( 0g ` Q ) = ( 0g ` Q ) |
34 |
|
eqid |
|- ( 0g ` A ) = ( 0g ` A ) |
35 |
|
fveq2 |
|- ( k = l -> ( ( coe1 ` p ) ` k ) = ( ( coe1 ` p ) ` l ) ) |
36 |
35
|
oveqd |
|- ( k = l -> ( i ( ( coe1 ` p ) ` k ) j ) = ( i ( ( coe1 ` p ) ` l ) j ) ) |
37 |
|
oveq1 |
|- ( k = l -> ( k E Y ) = ( l E Y ) ) |
38 |
36 37
|
oveq12d |
|- ( k = l -> ( ( i ( ( coe1 ` p ) ` k ) j ) .x. ( k E Y ) ) = ( ( i ( ( coe1 ` p ) ` l ) j ) .x. ( l E Y ) ) ) |
39 |
38
|
cbvmptv |
|- ( k e. NN0 |-> ( ( i ( ( coe1 ` p ) ` k ) j ) .x. ( k E Y ) ) ) = ( l e. NN0 |-> ( ( i ( ( coe1 ` p ) ` l ) j ) .x. ( l E Y ) ) ) |
40 |
39
|
oveq2i |
|- ( P gsum ( k e. NN0 |-> ( ( i ( ( coe1 ` p ) ` k ) j ) .x. ( k E Y ) ) ) ) = ( P gsum ( l e. NN0 |-> ( ( i ( ( coe1 ` p ) ` l ) j ) .x. ( l E Y ) ) ) ) |
41 |
40
|
a1i |
|- ( ( i e. N /\ j e. N ) -> ( P gsum ( k e. NN0 |-> ( ( i ( ( coe1 ` p ) ` k ) j ) .x. ( k E Y ) ) ) ) = ( P gsum ( l e. NN0 |-> ( ( i ( ( coe1 ` p ) ` l ) j ) .x. ( l E Y ) ) ) ) ) |
42 |
41
|
mpoeq3ia |
|- ( i e. N , j e. N |-> ( P gsum ( k e. NN0 |-> ( ( i ( ( coe1 ` p ) ` k ) j ) .x. ( k E Y ) ) ) ) ) = ( i e. N , j e. N |-> ( P gsum ( l e. NN0 |-> ( ( i ( ( coe1 ` p ) ` l ) j ) .x. ( l E Y ) ) ) ) ) |
43 |
42
|
mpteq2i |
|- ( p e. L |-> ( i e. N , j e. N |-> ( P gsum ( k e. NN0 |-> ( ( i ( ( coe1 ` p ) ` k ) j ) .x. ( k E Y ) ) ) ) ) ) = ( p e. L |-> ( i e. N , j e. N |-> ( P gsum ( l e. NN0 |-> ( ( i ( ( coe1 ` p ) ` l ) j ) .x. ( l E Y ) ) ) ) ) ) |
44 |
7 43
|
eqtri |
|- I = ( p e. L |-> ( i e. N , j e. N |-> ( P gsum ( l e. NN0 |-> ( ( i ( ( coe1 ` p ) ` l ) j ) .x. ( l E Y ) ) ) ) ) ) |
45 |
1 2 3 4 5 6 44 8
|
mp2pm2mplem4 |
|- ( ( ( N e. Fin /\ R e. Ring /\ O e. L ) /\ k e. NN0 ) -> ( ( I ` O ) decompPMat k ) = ( ( coe1 ` O ) ` k ) ) |
46 |
45
|
mpteq2dva |
|- ( ( N e. Fin /\ R e. Ring /\ O e. L ) -> ( k e. NN0 |-> ( ( I ` O ) decompPMat k ) ) = ( k e. NN0 |-> ( ( coe1 ` O ) ` k ) ) ) |
47 |
2 3 34
|
mptcoe1fsupp |
|- ( ( A e. Ring /\ O e. L ) -> ( k e. NN0 |-> ( ( coe1 ` O ) ` k ) ) finSupp ( 0g ` A ) ) |
48 |
14 47
|
stoic3 |
|- ( ( N e. Fin /\ R e. Ring /\ O e. L ) -> ( k e. NN0 |-> ( ( coe1 ` O ) ` k ) ) finSupp ( 0g ` A ) ) |
49 |
46 48
|
eqbrtrd |
|- ( ( N e. Fin /\ R e. Ring /\ O e. L ) -> ( k e. NN0 |-> ( ( I ` O ) decompPMat k ) ) finSupp ( 0g ` A ) ) |
50 |
13 17 20 3 29 32 33 34 9 49
|
mptscmfsupp0 |
|- ( ( N e. Fin /\ R e. Ring /\ O e. L ) -> ( k e. NN0 |-> ( ( ( I ` O ) decompPMat k ) .* ( k .^ X ) ) ) finSupp ( 0g ` Q ) ) |