Metamath Proof Explorer


Theorem mp3an

Description: An inference based on modus ponens. (Contributed by NM, 14-May-1999)

Ref Expression
Hypotheses mp3an.1
|- ph
mp3an.2
|- ps
mp3an.3
|- ch
mp3an.4
|- ( ( ph /\ ps /\ ch ) -> th )
Assertion mp3an
|- th

Proof

Step Hyp Ref Expression
1 mp3an.1
 |-  ph
2 mp3an.2
 |-  ps
3 mp3an.3
 |-  ch
4 mp3an.4
 |-  ( ( ph /\ ps /\ ch ) -> th )
5 1 4 mp3an1
 |-  ( ( ps /\ ch ) -> th )
6 2 3 5 mp2an
 |-  th