Metamath Proof Explorer


Theorem mp3an12i

Description: mp3an with antecedents in standard conjunction form and with one hypothesis an implication. (Contributed by Alan Sare, 28-Aug-2016)

Ref Expression
Hypotheses mp3an12i.1
|- ph
mp3an12i.2
|- ps
mp3an12i.3
|- ( ch -> th )
mp3an12i.4
|- ( ( ph /\ ps /\ th ) -> ta )
Assertion mp3an12i
|- ( ch -> ta )

Proof

Step Hyp Ref Expression
1 mp3an12i.1
 |-  ph
2 mp3an12i.2
 |-  ps
3 mp3an12i.3
 |-  ( ch -> th )
4 mp3an12i.4
 |-  ( ( ph /\ ps /\ th ) -> ta )
5 1 2 4 mp3an12
 |-  ( th -> ta )
6 3 5 syl
 |-  ( ch -> ta )