Metamath Proof Explorer


Theorem mp3an1i

Description: An inference based on modus ponens. (Contributed by NM, 5-Jul-2005)

Ref Expression
Hypotheses mp3an1i.1
|- ps
mp3an1i.2
|- ( ph -> ( ( ps /\ ch /\ th ) -> ta ) )
Assertion mp3an1i
|- ( ph -> ( ( ch /\ th ) -> ta ) )

Proof

Step Hyp Ref Expression
1 mp3an1i.1
 |-  ps
2 mp3an1i.2
 |-  ( ph -> ( ( ps /\ ch /\ th ) -> ta ) )
3 2 com12
 |-  ( ( ps /\ ch /\ th ) -> ( ph -> ta ) )
4 1 3 mp3an1
 |-  ( ( ch /\ th ) -> ( ph -> ta ) )
5 4 com12
 |-  ( ph -> ( ( ch /\ th ) -> ta ) )