Metamath Proof Explorer


Theorem mp3an23

Description: An inference based on modus ponens. (Contributed by NM, 14-Jul-2005)

Ref Expression
Hypotheses mp3an23.1
|- ps
mp3an23.2
|- ch
mp3an23.3
|- ( ( ph /\ ps /\ ch ) -> th )
Assertion mp3an23
|- ( ph -> th )

Proof

Step Hyp Ref Expression
1 mp3an23.1
 |-  ps
2 mp3an23.2
 |-  ch
3 mp3an23.3
 |-  ( ( ph /\ ps /\ ch ) -> th )
4 2 3 mp3an3
 |-  ( ( ph /\ ps ) -> th )
5 1 4 mpan2
 |-  ( ph -> th )