Metamath Proof Explorer


Theorem mp3an2ani

Description: An elimination deduction. (Contributed by Alan Sare, 17-Oct-2017)

Ref Expression
Hypotheses mp3an2ani.1
|- ph
mp3an2ani.2
|- ( ps -> ch )
mp3an2ani.3
|- ( ( ps /\ th ) -> ta )
mp3an2ani.4
|- ( ( ph /\ ch /\ ta ) -> et )
Assertion mp3an2ani
|- ( ( ps /\ th ) -> et )

Proof

Step Hyp Ref Expression
1 mp3an2ani.1
 |-  ph
2 mp3an2ani.2
 |-  ( ps -> ch )
3 mp3an2ani.3
 |-  ( ( ps /\ th ) -> ta )
4 mp3an2ani.4
 |-  ( ( ph /\ ch /\ ta ) -> et )
5 1 2 3 4 mp3an3an
 |-  ( ( ps /\ ( ps /\ th ) ) -> et )
6 5 anabss5
 |-  ( ( ps /\ th ) -> et )