Metamath Proof Explorer


Theorem mp3an3an

Description: mp3an with antecedents in standard conjunction form and with two hypotheses which are implications. (Contributed by Alan Sare, 28-Aug-2016)

Ref Expression
Hypotheses mp3an3an.1
|- ph
mp3an3an.2
|- ( ps -> ch )
mp3an3an.3
|- ( th -> ta )
mp3an3an.4
|- ( ( ph /\ ch /\ ta ) -> et )
Assertion mp3an3an
|- ( ( ps /\ th ) -> et )

Proof

Step Hyp Ref Expression
1 mp3an3an.1
 |-  ph
2 mp3an3an.2
 |-  ( ps -> ch )
3 mp3an3an.3
 |-  ( th -> ta )
4 mp3an3an.4
 |-  ( ( ph /\ ch /\ ta ) -> et )
5 1 4 mp3an1
 |-  ( ( ch /\ ta ) -> et )
6 2 3 5 syl2an
 |-  ( ( ps /\ th ) -> et )