Metamath Proof Explorer


Theorem mp3anl1

Description: An inference based on modus ponens. (Contributed by NM, 24-Feb-2005)

Ref Expression
Hypotheses mp3anl1.1
|- ph
mp3anl1.2
|- ( ( ( ph /\ ps /\ ch ) /\ th ) -> ta )
Assertion mp3anl1
|- ( ( ( ps /\ ch ) /\ th ) -> ta )

Proof

Step Hyp Ref Expression
1 mp3anl1.1
 |-  ph
2 mp3anl1.2
 |-  ( ( ( ph /\ ps /\ ch ) /\ th ) -> ta )
3 2 ex
 |-  ( ( ph /\ ps /\ ch ) -> ( th -> ta ) )
4 1 3 mp3an1
 |-  ( ( ps /\ ch ) -> ( th -> ta ) )
5 4 imp
 |-  ( ( ( ps /\ ch ) /\ th ) -> ta )