Metamath Proof Explorer


Theorem mp3anl2

Description: An inference based on modus ponens. (Contributed by NM, 24-Feb-2005)

Ref Expression
Hypotheses mp3anl2.1
|- ps
mp3anl2.2
|- ( ( ( ph /\ ps /\ ch ) /\ th ) -> ta )
Assertion mp3anl2
|- ( ( ( ph /\ ch ) /\ th ) -> ta )

Proof

Step Hyp Ref Expression
1 mp3anl2.1
 |-  ps
2 mp3anl2.2
 |-  ( ( ( ph /\ ps /\ ch ) /\ th ) -> ta )
3 2 ex
 |-  ( ( ph /\ ps /\ ch ) -> ( th -> ta ) )
4 1 3 mp3an2
 |-  ( ( ph /\ ch ) -> ( th -> ta ) )
5 4 imp
 |-  ( ( ( ph /\ ch ) /\ th ) -> ta )