Metamath Proof Explorer


Theorem mp3anr1

Description: An inference based on modus ponens. (Contributed by NM, 4-Nov-2006)

Ref Expression
Hypotheses mp3anr1.1
|- ps
mp3anr1.2
|- ( ( ph /\ ( ps /\ ch /\ th ) ) -> ta )
Assertion mp3anr1
|- ( ( ph /\ ( ch /\ th ) ) -> ta )

Proof

Step Hyp Ref Expression
1 mp3anr1.1
 |-  ps
2 mp3anr1.2
 |-  ( ( ph /\ ( ps /\ ch /\ th ) ) -> ta )
3 2 ancoms
 |-  ( ( ( ps /\ ch /\ th ) /\ ph ) -> ta )
4 1 3 mp3anl1
 |-  ( ( ( ch /\ th ) /\ ph ) -> ta )
5 4 ancoms
 |-  ( ( ph /\ ( ch /\ th ) ) -> ta )