Metamath Proof Explorer


Theorem mp3anr2

Description: An inference based on modus ponens. (Contributed by NM, 24-Nov-2006)

Ref Expression
Hypotheses mp3anr2.1
|- ch
mp3anr2.2
|- ( ( ph /\ ( ps /\ ch /\ th ) ) -> ta )
Assertion mp3anr2
|- ( ( ph /\ ( ps /\ th ) ) -> ta )

Proof

Step Hyp Ref Expression
1 mp3anr2.1
 |-  ch
2 mp3anr2.2
 |-  ( ( ph /\ ( ps /\ ch /\ th ) ) -> ta )
3 2 ancoms
 |-  ( ( ( ps /\ ch /\ th ) /\ ph ) -> ta )
4 1 3 mp3anl2
 |-  ( ( ( ps /\ th ) /\ ph ) -> ta )
5 4 ancoms
 |-  ( ( ph /\ ( ps /\ th ) ) -> ta )