Metamath Proof Explorer


Theorem mp3anr3

Description: An inference based on modus ponens. (Contributed by NM, 19-Oct-2007)

Ref Expression
Hypotheses mp3anr3.1
|- th
mp3anr3.2
|- ( ( ph /\ ( ps /\ ch /\ th ) ) -> ta )
Assertion mp3anr3
|- ( ( ph /\ ( ps /\ ch ) ) -> ta )

Proof

Step Hyp Ref Expression
1 mp3anr3.1
 |-  th
2 mp3anr3.2
 |-  ( ( ph /\ ( ps /\ ch /\ th ) ) -> ta )
3 2 ancoms
 |-  ( ( ( ps /\ ch /\ th ) /\ ph ) -> ta )
4 1 3 mp3anl3
 |-  ( ( ( ps /\ ch ) /\ ph ) -> ta )
5 4 ancoms
 |-  ( ( ph /\ ( ps /\ ch ) ) -> ta )