Metamath Proof Explorer


Theorem mpan

Description: An inference based on modus ponens. (Contributed by NM, 30-Aug-1993) (Proof shortened by Wolf Lammen, 7-Apr-2013)

Ref Expression
Hypotheses mpan.1
|- ph
mpan.2
|- ( ( ph /\ ps ) -> ch )
Assertion mpan
|- ( ps -> ch )

Proof

Step Hyp Ref Expression
1 mpan.1
 |-  ph
2 mpan.2
 |-  ( ( ph /\ ps ) -> ch )
3 1 a1i
 |-  ( ps -> ph )
4 3 2 mpancom
 |-  ( ps -> ch )