Metamath Proof Explorer


Theorem mpan2

Description: An inference based on modus ponens. (Contributed by NM, 16-Sep-1993) (Proof shortened by Wolf Lammen, 19-Nov-2012)

Ref Expression
Hypotheses mpan2.1
|- ps
mpan2.2
|- ( ( ph /\ ps ) -> ch )
Assertion mpan2
|- ( ph -> ch )

Proof

Step Hyp Ref Expression
1 mpan2.1
 |-  ps
2 mpan2.2
 |-  ( ( ph /\ ps ) -> ch )
3 1 a1i
 |-  ( ph -> ps )
4 3 2 mpdan
 |-  ( ph -> ch )