Metamath Proof Explorer


Theorem mpan2d

Description: A deduction based on modus ponens. (Contributed by NM, 12-Dec-2004)

Ref Expression
Hypotheses mpan2d.1
|- ( ph -> ch )
mpan2d.2
|- ( ph -> ( ( ps /\ ch ) -> th ) )
Assertion mpan2d
|- ( ph -> ( ps -> th ) )

Proof

Step Hyp Ref Expression
1 mpan2d.1
 |-  ( ph -> ch )
2 mpan2d.2
 |-  ( ph -> ( ( ps /\ ch ) -> th ) )
3 2 expd
 |-  ( ph -> ( ps -> ( ch -> th ) ) )
4 1 3 mpid
 |-  ( ph -> ( ps -> th ) )