Metamath Proof Explorer


Theorem mpan9

Description: Modus ponens conjoining dissimilar antecedents. (Contributed by NM, 1-Feb-2008) (Proof shortened by Andrew Salmon, 7-May-2011)

Ref Expression
Hypotheses mpan9.1
|- ( ph -> ps )
mpan9.2
|- ( ch -> ( ps -> th ) )
Assertion mpan9
|- ( ( ph /\ ch ) -> th )

Proof

Step Hyp Ref Expression
1 mpan9.1
 |-  ( ph -> ps )
2 mpan9.2
 |-  ( ch -> ( ps -> th ) )
3 1 2 syl5
 |-  ( ch -> ( ph -> th ) )
4 3 impcom
 |-  ( ( ph /\ ch ) -> th )