Description: An inference based on modus ponens. (Contributed by NM, 16-Aug-1994) (Proof shortened by Wolf Lammen, 7-Apr-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mpanl1.1 | |- ph |
|
| mpanl1.2 | |- ( ( ( ph /\ ps ) /\ ch ) -> th ) |
||
| Assertion | mpanl1 | |- ( ( ps /\ ch ) -> th ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpanl1.1 | |- ph |
|
| 2 | mpanl1.2 | |- ( ( ( ph /\ ps ) /\ ch ) -> th ) |
|
| 3 | 1 | jctl | |- ( ps -> ( ph /\ ps ) ) |
| 4 | 3 2 | sylan | |- ( ( ps /\ ch ) -> th ) |