Description: An inference based on modus ponens. (Contributed by NM, 16-Aug-1994) (Proof shortened by Wolf Lammen, 7-Apr-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mpanl1.1 | |- ph |
|
mpanl1.2 | |- ( ( ( ph /\ ps ) /\ ch ) -> th ) |
||
Assertion | mpanl1 | |- ( ( ps /\ ch ) -> th ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpanl1.1 | |- ph |
|
2 | mpanl1.2 | |- ( ( ( ph /\ ps ) /\ ch ) -> th ) |
|
3 | 1 | jctl | |- ( ps -> ( ph /\ ps ) ) |
4 | 3 2 | sylan | |- ( ( ps /\ ch ) -> th ) |