Metamath Proof Explorer


Theorem mpanl12

Description: An inference based on modus ponens. (Contributed by NM, 13-Jul-2005)

Ref Expression
Hypotheses mpanl12.1
|- ph
mpanl12.2
|- ps
mpanl12.3
|- ( ( ( ph /\ ps ) /\ ch ) -> th )
Assertion mpanl12
|- ( ch -> th )

Proof

Step Hyp Ref Expression
1 mpanl12.1
 |-  ph
2 mpanl12.2
 |-  ps
3 mpanl12.3
 |-  ( ( ( ph /\ ps ) /\ ch ) -> th )
4 1 3 mpanl1
 |-  ( ( ps /\ ch ) -> th )
5 2 4 mpan
 |-  ( ch -> th )