Metamath Proof Explorer


Theorem mpanlr1

Description: An inference based on modus ponens. (Contributed by NM, 30-Dec-2004) (Proof shortened by Wolf Lammen, 7-Apr-2013)

Ref Expression
Hypotheses mpanlr1.1
|- ps
mpanlr1.2
|- ( ( ( ph /\ ( ps /\ ch ) ) /\ th ) -> ta )
Assertion mpanlr1
|- ( ( ( ph /\ ch ) /\ th ) -> ta )

Proof

Step Hyp Ref Expression
1 mpanlr1.1
 |-  ps
2 mpanlr1.2
 |-  ( ( ( ph /\ ( ps /\ ch ) ) /\ th ) -> ta )
3 1 jctl
 |-  ( ch -> ( ps /\ ch ) )
4 3 2 sylanl2
 |-  ( ( ( ph /\ ch ) /\ th ) -> ta )