Description: An inference based on modus ponens. (Contributed by NM, 30-Dec-2004) (Proof shortened by Wolf Lammen, 7-Apr-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mpanlr1.1 | |- ps |
|
| mpanlr1.2 | |- ( ( ( ph /\ ( ps /\ ch ) ) /\ th ) -> ta ) |
||
| Assertion | mpanlr1 | |- ( ( ( ph /\ ch ) /\ th ) -> ta ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpanlr1.1 | |- ps |
|
| 2 | mpanlr1.2 | |- ( ( ( ph /\ ( ps /\ ch ) ) /\ th ) -> ta ) |
|
| 3 | 1 | jctl | |- ( ch -> ( ps /\ ch ) ) |
| 4 | 3 2 | sylanl2 | |- ( ( ( ph /\ ch ) /\ th ) -> ta ) |