Description: An inference based on modus ponens. (Contributed by NM, 30-Dec-2004) (Proof shortened by Wolf Lammen, 7-Apr-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mpanlr1.1 | |- ps |
|
mpanlr1.2 | |- ( ( ( ph /\ ( ps /\ ch ) ) /\ th ) -> ta ) |
||
Assertion | mpanlr1 | |- ( ( ( ph /\ ch ) /\ th ) -> ta ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpanlr1.1 | |- ps |
|
2 | mpanlr1.2 | |- ( ( ( ph /\ ( ps /\ ch ) ) /\ th ) -> ta ) |
|
3 | 1 | jctl | |- ( ch -> ( ps /\ ch ) ) |
4 | 3 2 | sylanl2 | |- ( ( ( ph /\ ch ) /\ th ) -> ta ) |