Metamath Proof Explorer


Theorem mpanr12

Description: An inference based on modus ponens. (Contributed by NM, 24-Jul-2009)

Ref Expression
Hypotheses mpanr12.1
|- ps
mpanr12.2
|- ch
mpanr12.3
|- ( ( ph /\ ( ps /\ ch ) ) -> th )
Assertion mpanr12
|- ( ph -> th )

Proof

Step Hyp Ref Expression
1 mpanr12.1
 |-  ps
2 mpanr12.2
 |-  ch
3 mpanr12.3
 |-  ( ( ph /\ ( ps /\ ch ) ) -> th )
4 1 3 mpanr1
 |-  ( ( ph /\ ch ) -> th )
5 2 4 mpan2
 |-  ( ph -> th )