Metamath Proof Explorer


Theorem mpbid

Description: A deduction from a biconditional, related to modus ponens. (Contributed by NM, 21-Jun-1993)

Ref Expression
Hypotheses mpbid.min
|- ( ph -> ps )
mpbid.maj
|- ( ph -> ( ps <-> ch ) )
Assertion mpbid
|- ( ph -> ch )

Proof

Step Hyp Ref Expression
1 mpbid.min
 |-  ( ph -> ps )
2 mpbid.maj
 |-  ( ph -> ( ps <-> ch ) )
3 2 biimpd
 |-  ( ph -> ( ps -> ch ) )
4 1 3 mpd
 |-  ( ph -> ch )