Metamath Proof Explorer


Theorem mpbir2an

Description: Detach a conjunction of truths in a biconditional. (Contributed by NM, 10-May-2005)

Ref Expression
Hypotheses mpbir2an.1
|- ps
mpbir2an.2
|- ch
mpbir2an.maj
|- ( ph <-> ( ps /\ ch ) )
Assertion mpbir2an
|- ph

Proof

Step Hyp Ref Expression
1 mpbir2an.1
 |-  ps
2 mpbir2an.2
 |-  ch
3 mpbir2an.maj
 |-  ( ph <-> ( ps /\ ch ) )
4 1 3 mpbiran
 |-  ( ph <-> ch )
5 2 4 mpbir
 |-  ph