Metamath Proof Explorer


Theorem mpbir2and

Description: Detach a conjunction of truths in a biconditional. (Contributed by NM, 6-Nov-2011) (Proof shortened by Wolf Lammen, 24-Nov-2012)

Ref Expression
Hypotheses mpbir2and.1
|- ( ph -> ch )
mpbir2and.2
|- ( ph -> th )
mpbir2and.3
|- ( ph -> ( ps <-> ( ch /\ th ) ) )
Assertion mpbir2and
|- ( ph -> ps )

Proof

Step Hyp Ref Expression
1 mpbir2and.1
 |-  ( ph -> ch )
2 mpbir2and.2
 |-  ( ph -> th )
3 mpbir2and.3
 |-  ( ph -> ( ps <-> ( ch /\ th ) ) )
4 1 2 jca
 |-  ( ph -> ( ch /\ th ) )
5 4 3 mpbird
 |-  ( ph -> ps )