Metamath Proof Explorer


Theorem mpbir3an

Description: Detach a conjunction of truths in a biconditional. (Contributed by NM, 16-Sep-2011)

Ref Expression
Hypotheses mpbir3an.1
|- ps
mpbir3an.2
|- ch
mpbir3an.3
|- th
mpbir3an.4
|- ( ph <-> ( ps /\ ch /\ th ) )
Assertion mpbir3an
|- ph

Proof

Step Hyp Ref Expression
1 mpbir3an.1
 |-  ps
2 mpbir3an.2
 |-  ch
3 mpbir3an.3
 |-  th
4 mpbir3an.4
 |-  ( ph <-> ( ps /\ ch /\ th ) )
5 1 2 3 3pm3.2i
 |-  ( ps /\ ch /\ th )
6 5 4 mpbir
 |-  ph