Description: Detach a conjunction of truths in a biconditional. (Contributed by Mario Carneiro, 11-May-2014) (Revised by Mario Carneiro, 9-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mpbir3and.1 | |- ( ph -> ch ) |
|
| mpbir3and.2 | |- ( ph -> th ) |
||
| mpbir3and.3 | |- ( ph -> ta ) |
||
| mpbir3and.4 | |- ( ph -> ( ps <-> ( ch /\ th /\ ta ) ) ) |
||
| Assertion | mpbir3and | |- ( ph -> ps ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpbir3and.1 | |- ( ph -> ch ) |
|
| 2 | mpbir3and.2 | |- ( ph -> th ) |
|
| 3 | mpbir3and.3 | |- ( ph -> ta ) |
|
| 4 | mpbir3and.4 | |- ( ph -> ( ps <-> ( ch /\ th /\ ta ) ) ) |
|
| 5 | 1 2 3 | 3jca | |- ( ph -> ( ch /\ th /\ ta ) ) |
| 6 | 5 4 | mpbird | |- ( ph -> ps ) |