Metamath Proof Explorer


Theorem mpbiran

Description: Detach truth from conjunction in biconditional. (Contributed by NM, 27-Feb-1996)

Ref Expression
Hypotheses mpbiran.1
|- ps
mpbiran.2
|- ( ph <-> ( ps /\ ch ) )
Assertion mpbiran
|- ( ph <-> ch )

Proof

Step Hyp Ref Expression
1 mpbiran.1
 |-  ps
2 mpbiran.2
 |-  ( ph <-> ( ps /\ ch ) )
3 1 biantrur
 |-  ( ch <-> ( ps /\ ch ) )
4 2 3 bitr4i
 |-  ( ph <-> ch )