Metamath Proof Explorer


Theorem mpbiran3d

Description: Equivalence with a conjunction one of whose conjuncts is a consequence of the other. Deduction form. (Contributed by Zhi Wang, 24-Sep-2024)

Ref Expression
Hypotheses mpbiran3d.1
|- ( ph -> ( ps <-> ( ch /\ th ) ) )
mpbiran3d.2
|- ( ( ph /\ ch ) -> th )
Assertion mpbiran3d
|- ( ph -> ( ps <-> ch ) )

Proof

Step Hyp Ref Expression
1 mpbiran3d.1
 |-  ( ph -> ( ps <-> ( ch /\ th ) ) )
2 mpbiran3d.2
 |-  ( ( ph /\ ch ) -> th )
3 1 simprbda
 |-  ( ( ph /\ ps ) -> ch )
4 3 ex
 |-  ( ph -> ( ps -> ch ) )
5 2 ex
 |-  ( ph -> ( ch -> th ) )
6 5 ancld
 |-  ( ph -> ( ch -> ( ch /\ th ) ) )
7 6 1 sylibrd
 |-  ( ph -> ( ch -> ps ) )
8 4 7 impbid
 |-  ( ph -> ( ps <-> ch ) )