Description: Equivalence with a conjunction one of whose conjuncts is a consequence of the other. Deduction form. (Contributed by Zhi Wang, 27-Sep-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mpbiran3d.1 | |- ( ph -> ( ps <-> ( ch /\ th ) ) ) |
|
mpbiran4d.2 | |- ( ( ph /\ th ) -> ch ) |
||
Assertion | mpbiran4d | |- ( ph -> ( ps <-> th ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpbiran3d.1 | |- ( ph -> ( ps <-> ( ch /\ th ) ) ) |
|
2 | mpbiran4d.2 | |- ( ( ph /\ th ) -> ch ) |
|
3 | 1 | biancomd | |- ( ph -> ( ps <-> ( th /\ ch ) ) ) |
4 | 3 2 | mpbiran3d | |- ( ph -> ( ps <-> th ) ) |