Metamath Proof Explorer


Theorem mpbiran4d

Description: Equivalence with a conjunction one of whose conjuncts is a consequence of the other. Deduction form. (Contributed by Zhi Wang, 27-Sep-2024)

Ref Expression
Hypotheses mpbiran3d.1
|- ( ph -> ( ps <-> ( ch /\ th ) ) )
mpbiran4d.2
|- ( ( ph /\ th ) -> ch )
Assertion mpbiran4d
|- ( ph -> ( ps <-> th ) )

Proof

Step Hyp Ref Expression
1 mpbiran3d.1
 |-  ( ph -> ( ps <-> ( ch /\ th ) ) )
2 mpbiran4d.2
 |-  ( ( ph /\ th ) -> ch )
3 1 biancomd
 |-  ( ph -> ( ps <-> ( th /\ ch ) ) )
4 3 2 mpbiran3d
 |-  ( ph -> ( ps <-> th ) )