Metamath Proof Explorer


Theorem mpbirand

Description: Detach truth from conjunction in biconditional. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses mpbirand.1
|- ( ph -> ch )
mpbirand.2
|- ( ph -> ( ps <-> ( ch /\ th ) ) )
Assertion mpbirand
|- ( ph -> ( ps <-> th ) )

Proof

Step Hyp Ref Expression
1 mpbirand.1
 |-  ( ph -> ch )
2 mpbirand.2
 |-  ( ph -> ( ps <-> ( ch /\ th ) ) )
3 1 biantrurd
 |-  ( ph -> ( th <-> ( ch /\ th ) ) )
4 2 3 bitr4d
 |-  ( ph -> ( ps <-> th ) )