Metamath Proof Explorer


Theorem mpdi

Description: A nested modus ponens deduction. (Contributed by NM, 16-Apr-2005) (Proof shortened by Mel L. O'Cat, 15-Jan-2008)

Ref Expression
Hypotheses mpdi.1
|- ( ps -> ch )
mpdi.2
|- ( ph -> ( ps -> ( ch -> th ) ) )
Assertion mpdi
|- ( ph -> ( ps -> th ) )

Proof

Step Hyp Ref Expression
1 mpdi.1
 |-  ( ps -> ch )
2 mpdi.2
 |-  ( ph -> ( ps -> ( ch -> th ) ) )
3 1 a1i
 |-  ( ph -> ( ps -> ch ) )
4 3 2 mpdd
 |-  ( ph -> ( ps -> th ) )