Step |
Hyp |
Ref |
Expression |
1 |
|
mpfconst.b |
|- B = ( Base ` S ) |
2 |
|
mpfconst.q |
|- Q = ran ( ( I evalSub S ) ` R ) |
3 |
|
mpfconst.i |
|- ( ph -> I e. V ) |
4 |
|
mpfconst.s |
|- ( ph -> S e. CRing ) |
5 |
|
mpfconst.r |
|- ( ph -> R e. ( SubRing ` S ) ) |
6 |
|
mpfconst.x |
|- ( ph -> X e. R ) |
7 |
|
eqid |
|- ( ( I evalSub S ) ` R ) = ( ( I evalSub S ) ` R ) |
8 |
|
eqid |
|- ( I mPoly ( S |`s R ) ) = ( I mPoly ( S |`s R ) ) |
9 |
|
eqid |
|- ( S |`s R ) = ( S |`s R ) |
10 |
|
eqid |
|- ( algSc ` ( I mPoly ( S |`s R ) ) ) = ( algSc ` ( I mPoly ( S |`s R ) ) ) |
11 |
7 8 9 1 10 3 4 5 6
|
evlssca |
|- ( ph -> ( ( ( I evalSub S ) ` R ) ` ( ( algSc ` ( I mPoly ( S |`s R ) ) ) ` X ) ) = ( ( B ^m I ) X. { X } ) ) |
12 |
|
eqid |
|- ( S ^s ( B ^m I ) ) = ( S ^s ( B ^m I ) ) |
13 |
7 8 9 12 1
|
evlsrhm |
|- ( ( I e. V /\ S e. CRing /\ R e. ( SubRing ` S ) ) -> ( ( I evalSub S ) ` R ) e. ( ( I mPoly ( S |`s R ) ) RingHom ( S ^s ( B ^m I ) ) ) ) |
14 |
3 4 5 13
|
syl3anc |
|- ( ph -> ( ( I evalSub S ) ` R ) e. ( ( I mPoly ( S |`s R ) ) RingHom ( S ^s ( B ^m I ) ) ) ) |
15 |
|
eqid |
|- ( Base ` ( I mPoly ( S |`s R ) ) ) = ( Base ` ( I mPoly ( S |`s R ) ) ) |
16 |
|
eqid |
|- ( Base ` ( S ^s ( B ^m I ) ) ) = ( Base ` ( S ^s ( B ^m I ) ) ) |
17 |
15 16
|
rhmf |
|- ( ( ( I evalSub S ) ` R ) e. ( ( I mPoly ( S |`s R ) ) RingHom ( S ^s ( B ^m I ) ) ) -> ( ( I evalSub S ) ` R ) : ( Base ` ( I mPoly ( S |`s R ) ) ) --> ( Base ` ( S ^s ( B ^m I ) ) ) ) |
18 |
|
ffn |
|- ( ( ( I evalSub S ) ` R ) : ( Base ` ( I mPoly ( S |`s R ) ) ) --> ( Base ` ( S ^s ( B ^m I ) ) ) -> ( ( I evalSub S ) ` R ) Fn ( Base ` ( I mPoly ( S |`s R ) ) ) ) |
19 |
14 17 18
|
3syl |
|- ( ph -> ( ( I evalSub S ) ` R ) Fn ( Base ` ( I mPoly ( S |`s R ) ) ) ) |
20 |
9
|
subrgring |
|- ( R e. ( SubRing ` S ) -> ( S |`s R ) e. Ring ) |
21 |
5 20
|
syl |
|- ( ph -> ( S |`s R ) e. Ring ) |
22 |
|
eqid |
|- ( Scalar ` ( I mPoly ( S |`s R ) ) ) = ( Scalar ` ( I mPoly ( S |`s R ) ) ) |
23 |
8
|
mplring |
|- ( ( I e. V /\ ( S |`s R ) e. Ring ) -> ( I mPoly ( S |`s R ) ) e. Ring ) |
24 |
8
|
mpllmod |
|- ( ( I e. V /\ ( S |`s R ) e. Ring ) -> ( I mPoly ( S |`s R ) ) e. LMod ) |
25 |
|
eqid |
|- ( Base ` ( Scalar ` ( I mPoly ( S |`s R ) ) ) ) = ( Base ` ( Scalar ` ( I mPoly ( S |`s R ) ) ) ) |
26 |
10 22 23 24 25 15
|
asclf |
|- ( ( I e. V /\ ( S |`s R ) e. Ring ) -> ( algSc ` ( I mPoly ( S |`s R ) ) ) : ( Base ` ( Scalar ` ( I mPoly ( S |`s R ) ) ) ) --> ( Base ` ( I mPoly ( S |`s R ) ) ) ) |
27 |
3 21 26
|
syl2anc |
|- ( ph -> ( algSc ` ( I mPoly ( S |`s R ) ) ) : ( Base ` ( Scalar ` ( I mPoly ( S |`s R ) ) ) ) --> ( Base ` ( I mPoly ( S |`s R ) ) ) ) |
28 |
1
|
subrgss |
|- ( R e. ( SubRing ` S ) -> R C_ B ) |
29 |
9 1
|
ressbas2 |
|- ( R C_ B -> R = ( Base ` ( S |`s R ) ) ) |
30 |
5 28 29
|
3syl |
|- ( ph -> R = ( Base ` ( S |`s R ) ) ) |
31 |
|
ovexd |
|- ( ph -> ( S |`s R ) e. _V ) |
32 |
8 3 31
|
mplsca |
|- ( ph -> ( S |`s R ) = ( Scalar ` ( I mPoly ( S |`s R ) ) ) ) |
33 |
32
|
fveq2d |
|- ( ph -> ( Base ` ( S |`s R ) ) = ( Base ` ( Scalar ` ( I mPoly ( S |`s R ) ) ) ) ) |
34 |
30 33
|
eqtrd |
|- ( ph -> R = ( Base ` ( Scalar ` ( I mPoly ( S |`s R ) ) ) ) ) |
35 |
6 34
|
eleqtrd |
|- ( ph -> X e. ( Base ` ( Scalar ` ( I mPoly ( S |`s R ) ) ) ) ) |
36 |
27 35
|
ffvelrnd |
|- ( ph -> ( ( algSc ` ( I mPoly ( S |`s R ) ) ) ` X ) e. ( Base ` ( I mPoly ( S |`s R ) ) ) ) |
37 |
|
fnfvelrn |
|- ( ( ( ( I evalSub S ) ` R ) Fn ( Base ` ( I mPoly ( S |`s R ) ) ) /\ ( ( algSc ` ( I mPoly ( S |`s R ) ) ) ` X ) e. ( Base ` ( I mPoly ( S |`s R ) ) ) ) -> ( ( ( I evalSub S ) ` R ) ` ( ( algSc ` ( I mPoly ( S |`s R ) ) ) ` X ) ) e. ran ( ( I evalSub S ) ` R ) ) |
38 |
19 36 37
|
syl2anc |
|- ( ph -> ( ( ( I evalSub S ) ` R ) ` ( ( algSc ` ( I mPoly ( S |`s R ) ) ) ` X ) ) e. ran ( ( I evalSub S ) ` R ) ) |
39 |
11 38
|
eqeltrrd |
|- ( ph -> ( ( B ^m I ) X. { X } ) e. ran ( ( I evalSub S ) ` R ) ) |
40 |
39 2
|
eleqtrrdi |
|- ( ph -> ( ( B ^m I ) X. { X } ) e. Q ) |