| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							pf1rcl.q | 
							 |-  Q = ran ( eval1 ` R )  | 
						
						
							| 2 | 
							
								
							 | 
							pf1f.b | 
							 |-  B = ( Base ` R )  | 
						
						
							| 3 | 
							
								
							 | 
							mpfpf1.q | 
							 |-  E = ran ( 1o eval R )  | 
						
						
							| 4 | 
							
								
							 | 
							eqid | 
							 |-  ( 1o eval R ) = ( 1o eval R )  | 
						
						
							| 5 | 
							
								4 2
							 | 
							evlval | 
							 |-  ( 1o eval R ) = ( ( 1o evalSub R ) ` B )  | 
						
						
							| 6 | 
							
								5
							 | 
							rneqi | 
							 |-  ran ( 1o eval R ) = ran ( ( 1o evalSub R ) ` B )  | 
						
						
							| 7 | 
							
								3 6
							 | 
							eqtri | 
							 |-  E = ran ( ( 1o evalSub R ) ` B )  | 
						
						
							| 8 | 
							
								7
							 | 
							mpfrcl | 
							 |-  ( F e. E -> ( 1o e. _V /\ R e. CRing /\ B e. ( SubRing ` R ) ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							simp2d | 
							 |-  ( F e. E -> R e. CRing )  | 
						
						
							| 10 | 
							
								
							 | 
							id | 
							 |-  ( F e. E -> F e. E )  | 
						
						
							| 11 | 
							
								10 3
							 | 
							eleqtrdi | 
							 |-  ( F e. E -> F e. ran ( 1o eval R ) )  | 
						
						
							| 12 | 
							
								
							 | 
							1on | 
							 |-  1o e. On  | 
						
						
							| 13 | 
							
								
							 | 
							eqid | 
							 |-  ( 1o mPoly R ) = ( 1o mPoly R )  | 
						
						
							| 14 | 
							
								
							 | 
							eqid | 
							 |-  ( R ^s ( B ^m 1o ) ) = ( R ^s ( B ^m 1o ) )  | 
						
						
							| 15 | 
							
								4 2 13 14
							 | 
							evlrhm | 
							 |-  ( ( 1o e. On /\ R e. CRing ) -> ( 1o eval R ) e. ( ( 1o mPoly R ) RingHom ( R ^s ( B ^m 1o ) ) ) )  | 
						
						
							| 16 | 
							
								12 9 15
							 | 
							sylancr | 
							 |-  ( F e. E -> ( 1o eval R ) e. ( ( 1o mPoly R ) RingHom ( R ^s ( B ^m 1o ) ) ) )  | 
						
						
							| 17 | 
							
								
							 | 
							eqid | 
							 |-  ( Poly1 ` R ) = ( Poly1 ` R )  | 
						
						
							| 18 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` ( Poly1 ` R ) ) = ( Base ` ( Poly1 ` R ) )  | 
						
						
							| 19 | 
							
								17 18
							 | 
							ply1bas | 
							 |-  ( Base ` ( Poly1 ` R ) ) = ( Base ` ( 1o mPoly R ) )  | 
						
						
							| 20 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` ( R ^s ( B ^m 1o ) ) ) = ( Base ` ( R ^s ( B ^m 1o ) ) )  | 
						
						
							| 21 | 
							
								19 20
							 | 
							rhmf | 
							 |-  ( ( 1o eval R ) e. ( ( 1o mPoly R ) RingHom ( R ^s ( B ^m 1o ) ) ) -> ( 1o eval R ) : ( Base ` ( Poly1 ` R ) ) --> ( Base ` ( R ^s ( B ^m 1o ) ) ) )  | 
						
						
							| 22 | 
							
								
							 | 
							ffn | 
							 |-  ( ( 1o eval R ) : ( Base ` ( Poly1 ` R ) ) --> ( Base ` ( R ^s ( B ^m 1o ) ) ) -> ( 1o eval R ) Fn ( Base ` ( Poly1 ` R ) ) )  | 
						
						
							| 23 | 
							
								
							 | 
							fvelrnb | 
							 |-  ( ( 1o eval R ) Fn ( Base ` ( Poly1 ` R ) ) -> ( F e. ran ( 1o eval R ) <-> E. x e. ( Base ` ( Poly1 ` R ) ) ( ( 1o eval R ) ` x ) = F ) )  | 
						
						
							| 24 | 
							
								16 21 22 23
							 | 
							4syl | 
							 |-  ( F e. E -> ( F e. ran ( 1o eval R ) <-> E. x e. ( Base ` ( Poly1 ` R ) ) ( ( 1o eval R ) ` x ) = F ) )  | 
						
						
							| 25 | 
							
								11 24
							 | 
							mpbid | 
							 |-  ( F e. E -> E. x e. ( Base ` ( Poly1 ` R ) ) ( ( 1o eval R ) ` x ) = F )  | 
						
						
							| 26 | 
							
								
							 | 
							eqid | 
							 |-  ( eval1 ` R ) = ( eval1 ` R )  | 
						
						
							| 27 | 
							
								26 4 2 13 19
							 | 
							evl1val | 
							 |-  ( ( R e. CRing /\ x e. ( Base ` ( Poly1 ` R ) ) ) -> ( ( eval1 ` R ) ` x ) = ( ( ( 1o eval R ) ` x ) o. ( y e. B |-> ( 1o X. { y } ) ) ) ) | 
						
						
							| 28 | 
							
								
							 | 
							eqid | 
							 |-  ( R ^s B ) = ( R ^s B )  | 
						
						
							| 29 | 
							
								26 17 28 2
							 | 
							evl1rhm | 
							 |-  ( R e. CRing -> ( eval1 ` R ) e. ( ( Poly1 ` R ) RingHom ( R ^s B ) ) )  | 
						
						
							| 30 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` ( R ^s B ) ) = ( Base ` ( R ^s B ) )  | 
						
						
							| 31 | 
							
								18 30
							 | 
							rhmf | 
							 |-  ( ( eval1 ` R ) e. ( ( Poly1 ` R ) RingHom ( R ^s B ) ) -> ( eval1 ` R ) : ( Base ` ( Poly1 ` R ) ) --> ( Base ` ( R ^s B ) ) )  | 
						
						
							| 32 | 
							
								
							 | 
							ffn | 
							 |-  ( ( eval1 ` R ) : ( Base ` ( Poly1 ` R ) ) --> ( Base ` ( R ^s B ) ) -> ( eval1 ` R ) Fn ( Base ` ( Poly1 ` R ) ) )  | 
						
						
							| 33 | 
							
								29 31 32
							 | 
							3syl | 
							 |-  ( R e. CRing -> ( eval1 ` R ) Fn ( Base ` ( Poly1 ` R ) ) )  | 
						
						
							| 34 | 
							
								
							 | 
							fnfvelrn | 
							 |-  ( ( ( eval1 ` R ) Fn ( Base ` ( Poly1 ` R ) ) /\ x e. ( Base ` ( Poly1 ` R ) ) ) -> ( ( eval1 ` R ) ` x ) e. ran ( eval1 ` R ) )  | 
						
						
							| 35 | 
							
								33 34
							 | 
							sylan | 
							 |-  ( ( R e. CRing /\ x e. ( Base ` ( Poly1 ` R ) ) ) -> ( ( eval1 ` R ) ` x ) e. ran ( eval1 ` R ) )  | 
						
						
							| 36 | 
							
								35 1
							 | 
							eleqtrrdi | 
							 |-  ( ( R e. CRing /\ x e. ( Base ` ( Poly1 ` R ) ) ) -> ( ( eval1 ` R ) ` x ) e. Q )  | 
						
						
							| 37 | 
							
								27 36
							 | 
							eqeltrrd | 
							 |-  ( ( R e. CRing /\ x e. ( Base ` ( Poly1 ` R ) ) ) -> ( ( ( 1o eval R ) ` x ) o. ( y e. B |-> ( 1o X. { y } ) ) ) e. Q ) | 
						
						
							| 38 | 
							
								
							 | 
							coeq1 | 
							 |-  ( ( ( 1o eval R ) ` x ) = F -> ( ( ( 1o eval R ) ` x ) o. ( y e. B |-> ( 1o X. { y } ) ) ) = ( F o. ( y e. B |-> ( 1o X. { y } ) ) ) ) | 
						
						
							| 39 | 
							
								38
							 | 
							eleq1d | 
							 |-  ( ( ( 1o eval R ) ` x ) = F -> ( ( ( ( 1o eval R ) ` x ) o. ( y e. B |-> ( 1o X. { y } ) ) ) e. Q <-> ( F o. ( y e. B |-> ( 1o X. { y } ) ) ) e. Q ) ) | 
						
						
							| 40 | 
							
								37 39
							 | 
							syl5ibcom | 
							 |-  ( ( R e. CRing /\ x e. ( Base ` ( Poly1 ` R ) ) ) -> ( ( ( 1o eval R ) ` x ) = F -> ( F o. ( y e. B |-> ( 1o X. { y } ) ) ) e. Q ) ) | 
						
						
							| 41 | 
							
								40
							 | 
							rexlimdva | 
							 |-  ( R e. CRing -> ( E. x e. ( Base ` ( Poly1 ` R ) ) ( ( 1o eval R ) ` x ) = F -> ( F o. ( y e. B |-> ( 1o X. { y } ) ) ) e. Q ) ) | 
						
						
							| 42 | 
							
								9 25 41
							 | 
							sylc | 
							 |-  ( F e. E -> ( F o. ( y e. B |-> ( 1o X. { y } ) ) ) e. Q ) |