Step |
Hyp |
Ref |
Expression |
1 |
|
mpfsubrg.q |
|- Q = ran ( ( I evalSub S ) ` R ) |
2 |
|
eqid |
|- ( ( I evalSub S ) ` R ) = ( ( I evalSub S ) ` R ) |
3 |
|
eqid |
|- ( I mPoly ( S |`s R ) ) = ( I mPoly ( S |`s R ) ) |
4 |
|
eqid |
|- ( S |`s R ) = ( S |`s R ) |
5 |
|
eqid |
|- ( S ^s ( ( Base ` S ) ^m I ) ) = ( S ^s ( ( Base ` S ) ^m I ) ) |
6 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
7 |
2 3 4 5 6
|
evlsrhm |
|- ( ( I e. V /\ S e. CRing /\ R e. ( SubRing ` S ) ) -> ( ( I evalSub S ) ` R ) e. ( ( I mPoly ( S |`s R ) ) RingHom ( S ^s ( ( Base ` S ) ^m I ) ) ) ) |
8 |
|
eqid |
|- ( Base ` ( I mPoly ( S |`s R ) ) ) = ( Base ` ( I mPoly ( S |`s R ) ) ) |
9 |
|
eqid |
|- ( Base ` ( S ^s ( ( Base ` S ) ^m I ) ) ) = ( Base ` ( S ^s ( ( Base ` S ) ^m I ) ) ) |
10 |
8 9
|
rhmf |
|- ( ( ( I evalSub S ) ` R ) e. ( ( I mPoly ( S |`s R ) ) RingHom ( S ^s ( ( Base ` S ) ^m I ) ) ) -> ( ( I evalSub S ) ` R ) : ( Base ` ( I mPoly ( S |`s R ) ) ) --> ( Base ` ( S ^s ( ( Base ` S ) ^m I ) ) ) ) |
11 |
|
ffn |
|- ( ( ( I evalSub S ) ` R ) : ( Base ` ( I mPoly ( S |`s R ) ) ) --> ( Base ` ( S ^s ( ( Base ` S ) ^m I ) ) ) -> ( ( I evalSub S ) ` R ) Fn ( Base ` ( I mPoly ( S |`s R ) ) ) ) |
12 |
|
fnima |
|- ( ( ( I evalSub S ) ` R ) Fn ( Base ` ( I mPoly ( S |`s R ) ) ) -> ( ( ( I evalSub S ) ` R ) " ( Base ` ( I mPoly ( S |`s R ) ) ) ) = ran ( ( I evalSub S ) ` R ) ) |
13 |
11 12
|
syl |
|- ( ( ( I evalSub S ) ` R ) : ( Base ` ( I mPoly ( S |`s R ) ) ) --> ( Base ` ( S ^s ( ( Base ` S ) ^m I ) ) ) -> ( ( ( I evalSub S ) ` R ) " ( Base ` ( I mPoly ( S |`s R ) ) ) ) = ran ( ( I evalSub S ) ` R ) ) |
14 |
7 10 13
|
3syl |
|- ( ( I e. V /\ S e. CRing /\ R e. ( SubRing ` S ) ) -> ( ( ( I evalSub S ) ` R ) " ( Base ` ( I mPoly ( S |`s R ) ) ) ) = ran ( ( I evalSub S ) ` R ) ) |
15 |
1 14
|
eqtr4id |
|- ( ( I e. V /\ S e. CRing /\ R e. ( SubRing ` S ) ) -> Q = ( ( ( I evalSub S ) ` R ) " ( Base ` ( I mPoly ( S |`s R ) ) ) ) ) |
16 |
4
|
subrgring |
|- ( R e. ( SubRing ` S ) -> ( S |`s R ) e. Ring ) |
17 |
3
|
mplring |
|- ( ( I e. V /\ ( S |`s R ) e. Ring ) -> ( I mPoly ( S |`s R ) ) e. Ring ) |
18 |
16 17
|
sylan2 |
|- ( ( I e. V /\ R e. ( SubRing ` S ) ) -> ( I mPoly ( S |`s R ) ) e. Ring ) |
19 |
18
|
3adant2 |
|- ( ( I e. V /\ S e. CRing /\ R e. ( SubRing ` S ) ) -> ( I mPoly ( S |`s R ) ) e. Ring ) |
20 |
8
|
subrgid |
|- ( ( I mPoly ( S |`s R ) ) e. Ring -> ( Base ` ( I mPoly ( S |`s R ) ) ) e. ( SubRing ` ( I mPoly ( S |`s R ) ) ) ) |
21 |
19 20
|
syl |
|- ( ( I e. V /\ S e. CRing /\ R e. ( SubRing ` S ) ) -> ( Base ` ( I mPoly ( S |`s R ) ) ) e. ( SubRing ` ( I mPoly ( S |`s R ) ) ) ) |
22 |
|
rhmima |
|- ( ( ( ( I evalSub S ) ` R ) e. ( ( I mPoly ( S |`s R ) ) RingHom ( S ^s ( ( Base ` S ) ^m I ) ) ) /\ ( Base ` ( I mPoly ( S |`s R ) ) ) e. ( SubRing ` ( I mPoly ( S |`s R ) ) ) ) -> ( ( ( I evalSub S ) ` R ) " ( Base ` ( I mPoly ( S |`s R ) ) ) ) e. ( SubRing ` ( S ^s ( ( Base ` S ) ^m I ) ) ) ) |
23 |
7 21 22
|
syl2anc |
|- ( ( I e. V /\ S e. CRing /\ R e. ( SubRing ` S ) ) -> ( ( ( I evalSub S ) ` R ) " ( Base ` ( I mPoly ( S |`s R ) ) ) ) e. ( SubRing ` ( S ^s ( ( Base ` S ) ^m I ) ) ) ) |
24 |
15 23
|
eqeltrd |
|- ( ( I e. V /\ S e. CRing /\ R e. ( SubRing ` S ) ) -> Q e. ( SubRing ` ( S ^s ( ( Base ` S ) ^m I ) ) ) ) |