Metamath Proof Explorer


Theorem mpg

Description: Modus ponens combined with generalization. (Contributed by NM, 24-May-1994)

Ref Expression
Hypotheses mpg.1
|- ( A. x ph -> ps )
mpg.2
|- ph
Assertion mpg
|- ps

Proof

Step Hyp Ref Expression
1 mpg.1
 |-  ( A. x ph -> ps )
2 mpg.2
 |-  ph
3 2 ax-gen
 |-  A. x ph
4 3 1 ax-mp
 |-  ps