Metamath Proof Explorer


Theorem mpidan

Description: A deduction which "stacks" a hypothesis. (Contributed by Stanislas Polu, 9-Mar-2020) (Proof shortened by Wolf Lammen, 28-Mar-2021)

Ref Expression
Hypotheses mpidan.1
|- ( ph -> ch )
mpidan.2
|- ( ( ( ph /\ ps ) /\ ch ) -> th )
Assertion mpidan
|- ( ( ph /\ ps ) -> th )

Proof

Step Hyp Ref Expression
1 mpidan.1
 |-  ( ph -> ch )
2 mpidan.2
 |-  ( ( ( ph /\ ps ) /\ ch ) -> th )
3 1 adantr
 |-  ( ( ph /\ ps ) -> ch )
4 3 2 mpdan
 |-  ( ( ph /\ ps ) -> th )