Metamath Proof Explorer


Theorem mpii

Description: A doubly nested modus ponens inference. (Contributed by NM, 31-Dec-1993) (Proof shortened by Wolf Lammen, 31-Jul-2012)

Ref Expression
Hypotheses mpii.1
|- ch
mpii.2
|- ( ph -> ( ps -> ( ch -> th ) ) )
Assertion mpii
|- ( ph -> ( ps -> th ) )

Proof

Step Hyp Ref Expression
1 mpii.1
 |-  ch
2 mpii.2
 |-  ( ph -> ( ps -> ( ch -> th ) ) )
3 1 a1i
 |-  ( ps -> ch )
4 3 2 mpdi
 |-  ( ph -> ( ps -> th ) )