Metamath Proof Explorer


Theorem mpjaod

Description: Eliminate a disjunction in a deduction. (Contributed by Mario Carneiro, 29-May-2016)

Ref Expression
Hypotheses jaod.1
|- ( ph -> ( ps -> ch ) )
jaod.2
|- ( ph -> ( th -> ch ) )
jaod.3
|- ( ph -> ( ps \/ th ) )
Assertion mpjaod
|- ( ph -> ch )

Proof

Step Hyp Ref Expression
1 jaod.1
 |-  ( ph -> ( ps -> ch ) )
2 jaod.2
 |-  ( ph -> ( th -> ch ) )
3 jaod.3
 |-  ( ph -> ( ps \/ th ) )
4 1 2 jaod
 |-  ( ph -> ( ( ps \/ th ) -> ch ) )
5 3 4 mpd
 |-  ( ph -> ch )